Chemistry 115
Dr. Cary Willard
Exam 4A

Name \qquad

December 10, 2008

	Points Earned	Points Possible
Part 1 multiple choice		28
Page 2		25
Page 3		29
Page 4		18
Total		100

All work must be shown to receive credit. Show all answers to the proper number of significant figures.
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} / \mathrm{mol}$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.16$
$0^{\circ} \mathrm{C}=273.16 \mathrm{~K}$

Grossmont College Periodic Table																	
IA																VIIA	NOBLE GASES
$\begin{aligned} & \text { 1 } \\ & \mathbf{H} \\ & 1.008 \end{aligned}$	IIA											IIIA	IVA	VA	VIA	$\begin{aligned} & 1 \\ & \mathbf{H} \\ & 1.008 \end{aligned}$	2 He 4.002
$\begin{aligned} & 3 \\ & \mathbf{L i} \\ & 6.941 \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{Be} \\ & 9.012 \end{aligned}$											$\begin{array}{\|l\|} \hline 5 \\ \text { B } \\ 10.81 \\ \hline \end{array}$	$\begin{aligned} & 6 \\ & \mathbf{C} \\ & 12.01 \end{aligned}$	$\begin{aligned} & 7 \\ & \mathbf{N} \\ & 14.01 \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ \mathbf{O} \\ 16.00 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & F \\ & 19.00 \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \\ & 20.18 \end{aligned}$
11 Na 23.00	12 $\mathbf{M g}$ 24.30	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB	13 AI 27.00	14 Si 28.09	$\begin{aligned} & 15 \\ & \mathbf{P} \\ & 30.97 \end{aligned}$	16 S 32.06	$\begin{aligned} & 17 \\ & \mathrm{CI} \\ & 35.45 \\ & \hline \end{aligned}$	18 Ar 39.95
$\begin{aligned} & \hline 19 \\ & \mathbf{K} \\ & 39.10 \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.08 \end{aligned}$	21 Sc 44.96	$\begin{aligned} & \hline 22 \\ & \mathrm{Ti} \\ & 47.90 \end{aligned}$	$\begin{aligned} & 23 \\ & \mathbf{V} \\ & 50.94 \end{aligned}$	$\begin{aligned} & \hline 24 \\ & \mathrm{Cr} \\ & 52.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25 \\ & \mathbf{M n} \\ & 54.94 \\ & \hline \end{aligned}$	26 Fe 55.85	27 Co 58.93	$\begin{aligned} & 28 \\ & \mathbf{N i} \\ & 58.70 \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \\ & 63.55 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ \mathbf{Z n} \\ 65.38 \end{array}$	31 Ga 69.72	$\begin{aligned} & 32 \\ & \text { Ge } \\ & 72.59 \end{aligned}$	33 As 74.92	34 Se 78.96	35 Br 79.90	$\begin{aligned} & \hline 36 \\ & \mathbf{K r} \\ & 83.80 \\ & \hline \end{aligned}$
37 Rb 85.47	38 Sr 87.62 56	$\begin{aligned} & \hline 39 \\ & \mathbf{Y} \\ & 88.91 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \\ & 91.22 \end{aligned}$	$\begin{aligned} & \hline 41 \\ & \mathrm{Nb} \\ & 92.91 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 42 \\ \text { Mo } \\ 95.94 \\ \hline \end{array}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & \text { (99) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 44 \\ \text { Ru } \\ 101.1 \\ \hline \end{array}$	$\begin{aligned} & \hline 45 \\ & \text { Rh } \\ & 102.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 46 \\ & \text { Pd } \\ & 106.4 \\ & \hline \end{aligned}$	47 $\mathbf{A g}$ 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	$\begin{aligned} & 53 \\ & \text { I } \\ & 126.9 \end{aligned}$	54 Xe 131.3
$\begin{aligned} & \hline 55 \\ & \text { Cs } \\ & 132.9 \end{aligned}$	56 Ba 137.3	$\begin{aligned} & \hline 57 \\ & \mathrm{La} \\ & 138.9 \end{aligned}$	72 Hf 178.5	73 Ta 180.9	$\begin{aligned} & \hline 74 \\ & \mathrm{~W} \\ & 183.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 75 \\ & \operatorname{Re} \\ & 186.2 \end{aligned}$	$\begin{aligned} & \hline 76 \\ & \text { Os } \\ & 190.2 \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \mathbf{I r} \\ & 192.2 \end{aligned}$	$\begin{aligned} & \hline 78 \\ & \mathbf{P t} \\ & 195.1 \end{aligned}$	$\begin{aligned} & \hline 79 \\ & \mathbf{A u} \\ & 197.0 \end{aligned}$	80 Hg 200.6	$\begin{aligned} & \hline 81 \\ & \mathrm{TI} \\ & 204.4 \\ & \hline \end{aligned}$	82 Pb 207.2	83 Bi 209.0	124 Po (209)	85 At (210)	$\begin{aligned} & \hline 86 \\ & \mathbf{R n} \\ & (222) \\ & \hline \end{aligned}$
87 Fr (223)	88 Ra 226.0	89 Ac 227.0	$\begin{aligned} & \hline 104 \\ & \mathbf{R f} \\ & (261) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 105 \\ & \text { Db } \\ & (262) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 106 \\ & \mathrm{Sg} \\ & (263) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 107 \\ & \text { Bh } \\ & (262) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 108 \\ & \mathrm{Hs} \\ & (265) \\ & \hline \end{aligned}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \\ & (266) \\ & \hline \end{aligned}$	110 $? ?$ (269)								

Lanthanide series

Actinide series

58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (147)	$\begin{aligned} & 62 \\ & \mathrm{Sm} \\ & 150.4 \end{aligned}$	63 Eu 152.0	64 Gd 157.3	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \\ & 158.9 \end{aligned}$	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	$\begin{aligned} & 69 \\ & \mathrm{Tm} \\ & 168.9 \end{aligned}$	70 Yb 173.0	71 Lu 175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Part 1 - Multiple Choice (28 points)

1. Which phase change is evaporation?
a. Solid to liquid
c. Liquid to gas
b. Solid to gas
d. Liquid to solid
2. The vapor pressure of a liquid is the pressure, at equilibrium, of its
a. Solid above its liquid
c. Gas above its liquid
b. Liquid above its solid
d. Liquid above its gas
3. What type of bond exists between water molecules?
a. Polar covalent
c. Ionic
b. Nonpolar covalent
d. Hydrogen bond
4. At which temperature would CO_{2} gas be most soluble?
a. $\quad 10 .{ }^{\circ} \mathrm{C}$
b. $\quad 20 .{ }^{\circ} \mathrm{C}$
c. $\quad 30 .{ }^{\circ} \mathrm{C}$
d. $\quad 40 .{ }^{\circ} \mathrm{C}$
5. Which is the hydronium ion?
a. H^{+1}
b. $\mathrm{H}_{3} \mathrm{O}^{+1}$
c. OH^{-1}
d. $\quad \mathrm{OH}_{2}{ }^{-1}$
6. Which pH is most acidic?
a. 3
b. 7
c. 9
d. 14
7. What is the conjugate base of NH_{3} ?
a. $\quad \mathrm{NH}_{2}{ }^{-1}$
b. $\quad \mathrm{NH}^{-2}$
c. $\quad \mathrm{NH}_{4}{ }^{+1}$
d. H^{+1}
8. A beta particle has
a. A mass of 4 amu
c. A charge of -1
b. \quad A charge of +4
d. Neither mass nor charge
9. In which type of reaction does a heavy nucleus absorb a neutron, split to form two or more intermediate sized fragments, and release at least two neutrons?
a. Alpha decay
c. Fission
b. Beta decay
d. Fusion
10. Which compound is organic?
a. HOH
b. NaOH
c. HCl
d. CH_{4}
11. Which hydrocarbon series contains a double covalent bond between carbon atoms?
a. Alkynes
c. Alkanes
b. Alkenes
d. Aromatics
12. Starches are examples of
a. Carbohydrates
c. Lipids
b. Proteins
d. Nucleic acids
13. Fats and oils are called
a. Monoglycerides
c. Triglycerides
b. Diglycerides
d. Tetraglycerides
14. The most abundant steroid in the human body is
a. Testosterone
c. Estrogen
b. Progesterone
d. Cholesterol

Part 2 - Problems and Questions (72 points)

1. (8 points) Fill in the chart below

IUPAC name	Molecular formula
Nitric acid	
Hydrochloric acid	
	$\mathrm{H}_{2} \mathrm{SO}_{4}$
	$\mathrm{H}_{2} \mathrm{~S}$

2. (5 points) Which liquid is more viscous, water or motor oil? In which liquid do you suppose the intermolecular attractions are stronger? Explain.
3. (6 points) What mass (g) of 63.7% solution can be prepared from 22.4 g of MgS ?
4. (6 points) Calculate the molarity of a solution prepared by dissolving 38.5 g of SrO in enough water to make 600.0 ml of solution.
5. (6 points) 33.6 ml of $0.903 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is diluted to 150.0 ml . What is the molarity of the resulting solution?
6. (6 points) A solution has an $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of $5.83 \times 10^{-2} \mathrm{M}$. Determine $[\mathrm{OH}], \mathrm{pH}$, and pOH .
7. (6 points) A 25.00 ml sample of vinegar was titrated with 29.64 ml of 0.4052 M NaOH . Calculate the molarity of acetic acid in the vinegar sample.
a. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \longrightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
8. (6 points) Differentiate between fusion and fission based on your knowledge of nuclear chemistry?
9. (5 points) Gold-198 is a beta emitter used to assess kidney activity. Write the equation for the decay of gold-198.
10. (3 points) Give the IUPAC name of

11. (3 points) Give the IUPAC name of

12. (3 points) Draw a condensed structural formula for 2,2,4-trimethylhexane.
13. (3 points) Draw a condensed structural formula for 1-butyne.
14. (3 points) What kind of functional group is represented by

15. (3 points) What kind of functional group is represented by $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}-\mathrm{OH}}$?
